Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 100
1.
J Mater Chem B ; 11(34): 8241-8250, 2023 08 30.
Article En | MEDLINE | ID: mdl-37565837

In an effort to obtain porous scaffolds with improved mechanical properties and biocompatibility, the current study discusses nanocomposite materials based on poly(propylene fumarate)/N-vinyl pyrrolidone(PPF/NVP) networks reinforced with polymer-modified graphene oxide (GO@PPF). The GO@PPF nanofiller was synthesized through a facile and convenient surface esterification reaction, and the successful functionalization was demonstrated by complementary techniques such as FT-IR, XPS, TGA and TEM. The PPF/NVP/GO@PPF porous scaffolds obtained using NaCl as a porogen were further characterized in terms of morphology, mechanical properties, sol fraction, and in vitro degradability. SEM and nanoCT examinations of NaCl-leached samples revealed networks of interconnected pores, fairly uniform in size and shape. We show that the incorporation of GO@PPF in the polymer matrix leads to a significant enhancement in the mechanical properties, which we attribute to the formation of denser and more homogenous networks, as suggested by a decreased sol fraction for the scaffolds containing a higher amount of GO@PPF. Moreover, the surface of mineralized PPF/NVP/GO@PPG scaffolds is uniformly covered in hydroxyapatite-like crystals having a morphology and Ca/P ratio similar to bone tissue. Furthermore, the preliminary biocompatibility assessment revealed a good interaction between PPF/PVP/GO@PPF scaffolds and murine pre-osteoblasts in terms of cell viability and proliferation.


Polymers , Sodium Chloride , Animals , Mice , Porosity , Spectroscopy, Fourier Transform Infrared , Polymers/chemistry
2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article En | MEDLINE | ID: mdl-37047539

Cutaneous melanoma is one of the most aggressive types of cancer and often proves fatal in metastatic stages. Few treatment options are available, and its global incidence is quickly increasing. In order to gain an improved understanding of the molecular features regarding melanoma progression, we have compared gene and small non-coding RNA expression profiles from cell lines derived from primary melanoma (MelJuSo), lymph node metastasis (MNT-1) and brain metastasis (VMM1), representing distinct stages of malignant progression. Our preliminary results highlighted the aberrant regulation of molecular markers involved in several processes that aid melanoma progression and metastasis development, including extracellular matrix remodeling, migratory potential and angiogenesis. Moreover, bioinformatic analysis revealed potential targets of the microRNAs of interest. Confocal microscopy and immunohistochemistry analysis were used for validation at the protein level. Exploring the molecular landscape of melanoma may contribute to the achievement of future efficient targeted therapy, as well as better prevention, diagnosis and clinical management.


Melanoma , MicroRNAs , Skin Neoplasms , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Gene Expression Profiling/methods , MicroRNAs/genetics , Biomarkers , Neoplasm Metastasis , Melanoma, Cutaneous Malignant
3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36768351

Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels' activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications.


Cytoskeleton , Magnetic Phenomena , Mechanotransduction, Cellular , Stem Cells , Cell Differentiation , Cytoskeleton/metabolism , Mechanotransduction, Cellular/physiology , Stem Cells/metabolism
4.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article En | MEDLINE | ID: mdl-36834660

During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.


MicroRNAs , Triple Negative Breast Neoplasms , Humans , MicroRNAs/therapeutic use , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Triple Negative Breast Neoplasms/pathology , Pyroptosis , Tumor Microenvironment
5.
Cancers (Basel) ; 14(24)2022 Dec 10.
Article En | MEDLINE | ID: mdl-36551569

Lung cancer ranks second worldwide after breast cancer and third in Europe after breast and colorectal cancers when both sexes and all ages are considered. In this context, the aim of this study was to emphasize the power of dual analysis of the molecular profile both in tumor tissue and plasma by NGS assay as a liquid biopsy approach with impact on prognosis and therapy modulation in NSCLC patients. NGS analysis was performed both from tissue biopsies and from cfNAs isolated from peripheral blood samples. Out of all 29 different mutations detectable by both NGS panels (plasma and tumor tissue), seven different variants (24.13%; EGFR L858R in two patients, KRAS G13D and Q61H and TP53 G244D, V197M, R213P, and R273H) were detected only in plasma and not in the tumor itself. These mutations were detected in seven different patients, two of them having known distant organ metastasis. Our data show that NGS analysis of cfDNA could identify actionable mutations in advanced NSCLC and, therefore, this analysis could be used to monitor the disease progression and the treatment response and even to modulate the therapy in real time.

6.
Cells ; 11(21)2022 10 22.
Article En | MEDLINE | ID: mdl-36359733

Liver fibrosis can develop on the background of hyperglycemia in diabetes mellitus. However, xenobiotic-related factors may accelerate diabetes-associated liver fibrosis. In this study, we aimed to assess the antfibrotic effect of ADSC and HGF therapy and to establish the cellular and molecular mechanisms through in vitro and in vivo experiments. In vitro, TGF-ß1-activated hepatic stellate cells (HSCs) were cocultured with ADSCs or HGF, and the expression of several fibrosis markers was investigated. The antifibrotic effect of the ADSCs, HGF, and ADSCs supplemented with HGF was further assessed in vivo on diabetic mice with liver fibrosis experimentally induced. In vitro results showed the inhibition of HSC proliferation and decrease in fibrogenesis markers. Coadministration of ADSCs and HGF on diabetic mice with liver fibrosis enhanced antifibrotic effects confirmed by the downregulation of Col I, α-SMA, TGF-ß1, and Smad2, while Smad7 was upregulated. Moreover, stem cell therapy supplemented with HGF considerably attenuated inflammation and microvesicular steatosis, decreased collagen deposits, and alleviated liver fibrosis. In conclusion, the HGF-based ADSC therapy might be of interest for the treatment of liver fibrosis in diabetic patients, consecutive aggression exerts by different environmental factors.


Diabetes Mellitus, Experimental , Hepatic Stellate Cells , Liver Cirrhosis , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Hepatic Stellate Cells/metabolism , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/pharmacology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/therapy , Liver Cirrhosis/metabolism , Signal Transduction , Smad Proteins/metabolism , Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Mesenchymal Stem Cells
7.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Article En | MEDLINE | ID: mdl-36234548

As bone diseases and defects are constantly increasing, the improvement of bone regeneration techniques is constantly evolving. The main purpose of this scientific study was to obtain and investigate biomaterials that can be used in tissue engineering. In this respect, nanocomposite inks of GelMA modified with hydroxyapatite (HA) substituted with Mg and Zn were developed. Using a 3D bioprinting technique, scaffolds with varying shapes and dimensions were obtained. The following analyses were used in order to study the nanocomposite materials and scaffolds obtained by the 3D printing technique: Fourier transform infrared spectrometry and X-ray diffraction (XRD), scanning electron microscopy (SEM), and micro-computed tomography (Micro-CT). The swelling and dissolvability of each scaffold were also studied. Biological studies, osteopontin (OPN), and osterix (OSX) gene expression evaluations were confirmed at the protein levels, using immunofluorescence coupled with confocal microscopy. These findings suggest the positive effect of magnesium and zinc on the osteogenic differentiation process. OSX fluorescent staining also confirmed the capacity of GelMA-HM5 and GelMA-HZ5 to support osteogenesis, especially of the magnesium enriched scaffold.

8.
Rom J Morphol Embryol ; 63(1): 31-38, 2022.
Article En | MEDLINE | ID: mdl-36074665

Liquid biopsy is a promising tool for a better cancer management and currently opens perspectives for several clinical applications, such as detection of mutations when the analysis from tissue is not available, monitoring tumor mutational burden and prediction of targeted therapy response. These characteristics validate liquid biopsy analysis as a strong cancer biomarkers source with high potential for improving cancer patient's evolution. Compared to classical biopsy, liquid biopsy is a minimal invasive procedure, and it allows the real-time monitoring of treatment response. Considering that lung cancer is the most common cause of cancer-associated death worldwide and that only 15-19% of the lung cancer patients survive five years after diagnosis, there is an important interest in improving its management. Like in other types of solid cancers, lung cancer could benefit from liquid biopsy through a simple peripheral blood sample as tumor-related biomarkers, such as circulating tumor cells (CTCs), cell-free nucleic acids (cfNA) [cell-free ribonucleic acid (cfRNA) and cell-free deoxyribonucleic acid (cfDNA)], exosomes and tumor-educated platelets (TEPs) may shed into circulation because of necrosis or in an active manner. More, the detection and analysis of these biomarkers could lead to a better understanding of oncological diseases like lung cancer. The better the tumor profile is established; the better management is possible. However, this approach has currently some limitations, such as low cfNA concentration or low count of CTCs that might be overcome by improving the actual methods and technologies.


Cell-Free Nucleic Acids , Lung Neoplasms , Neoplastic Cells, Circulating , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Humans , Liquid Biopsy/methods , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/pathology
9.
Polymers (Basel) ; 14(9)2022 Apr 20.
Article En | MEDLINE | ID: mdl-35566836

Organ-on-chips (OOCs) are microfluidic devices used for creating physiological organ biomimetic systems. OOC technology brings numerous advantages in the current landscape of preclinical models, capable of recapitulating the multicellular assemblage, tissue-tissue interaction, and replicating numerous human pathologies. Moreover, in cancer research, OOCs emulate the 3D hierarchical complexity of in vivo tumors and mimic the tumor microenvironment, being a practical cost-efficient solution for tumor-growth investigation and anticancer drug screening. OOCs are compact and easy-to-use microphysiological functional units that recapitulate the native function and the mechanical strain that the cells experience in the human bodies, allowing the development of a wide range of applications such as disease modeling or even the development of diagnostic devices. In this context, the current work aims to review the scientific literature in the field of microfluidic devices designed for urology applications in terms of OOC fabrication (principles of manufacture and materials used), development of kidney-on-chip models for drug-toxicity screening and kidney tumors modeling, bladder-on-chip models for urinary tract infections and bladder cancer modeling and prostate-on-chip models for prostate cancer modeling.

10.
Front Oncol ; 12: 856575, 2022.
Article En | MEDLINE | ID: mdl-35356214

Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.

11.
Nanomaterials (Basel) ; 12(3)2022 Jan 31.
Article En | MEDLINE | ID: mdl-35159848

Due to their remarkable structures and properties, three-dimensional hydrogels and nanostructured clay particles have been extensively studied and have shown a high potential for tissue engineering as solutions for tissue defects. In this study, four types of 2-hydroxyethyl methacrylate/2-acrylamido-2-methylpropane sulfonic acid/montmorillonite (HEMA/AMPSA/MMT) hydrogels enriched with sericin, and fibroin were prepared and studied in the context of regenerative medicine for soft tissue regenerative medicine. Our aim was to obtain crosslinked hydrogel structures using modified montmorillonite clay as a crosslinking agent. In order to improve the in vitro and in vivo biocompatibility, silk proteins were further incorporated within the hydrogel matrix. Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) were performed to prove the chemical structures of the modified MMT and nanocomposite hydrogels. Swelling and rheological measurements showed the good elastic behavior of the hydrogels due to this unique network structure in which modified MMT acts as a crosslinking agent. Hydrogel biocompatibility was assessed by MTT, LDH and LIVE/DEAD assays. The hydrogels were evaluated for their potential to support adipogenesis in vitro and human stem cells isolated from adipose tissue were seeded in them and induced to differentiate. The progress was assessed by evaluation of expression of adipogenic markers (ppar-γ2, perilipin) evaluated by qPCR. The potential of the materials to support tissue regeneration was further evaluated on animal models in vivo. All materials proved to be biocompatible, with better results on the 95% HEMA 5% AMPSA enriched with sericin and fibroin material. This composition promoted a better development of adipogenesis compared to the other compositions studied, due the addition of sericin and fibroin. The results were confirmed in vivo as well, with a better progress of soft tissue regeneration after implantation in mice. Therefore, hydrogel 95% HEMA 5% AMPSA enriched with sericin as well as fibroin showed the best results that recommend it for future soft tissue engineering application.

12.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article En | MEDLINE | ID: mdl-35163761

The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.


Biocompatible Materials/pharmacology , Cerium/chemistry , Gelatin/chemistry , Hydrogels/pharmacology , Hydroxyapatites/chemistry , Methacrylates/chemistry , Osteoblasts/cytology , Animals , Biocompatible Materials/chemistry , Bone Regeneration/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Hydrogels/chemistry , Mice , Osteogenesis , Powders , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry
13.
Int J Mol Sci ; 23(1)2022 Jan 01.
Article En | MEDLINE | ID: mdl-35008918

Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.


Biopolymers/pharmacology , Cell Differentiation , Graphite/pharmacology , Osteogenesis , 3T3 Cells , Alkaline Phosphatase/metabolism , Animals , Cell Differentiation/drug effects , Cell Shape/drug effects , Gene Expression Regulation/drug effects , Male , Mice , Osteogenesis/drug effects , Porosity , Spectroscopy, Fourier Transform Infrared , Subcutaneous Tissue/drug effects , Tissue Scaffolds/chemistry , X-Ray Diffraction , X-Ray Microtomography
14.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article En | MEDLINE | ID: mdl-36613995

The field of tissue engineering is constantly evolving due to the fabrication of novel platforms that promise to stimulate tissue regeneration in the scenario of accidents. Here, we describe the fabrication of fibrous nanostructured substrates based on fish gelatin (FG) and enriched with graphene oxide (GO) and magnetic nanoparticles (MNPs) and demonstrate its biological properties in terms of cell viability and proliferation, cell adhesion, and differentiation. For this purpose, electrospun fibers were fabricated using aqueous precursors containing either only GO and only MNP nanospecies, or both of them within a fish gelatin solution. The obtained materials were investigated in terms of morphology, aqueous media affinity, tensile elasticity, and structural characteristics. The biological evaluation was assessed against adipose-derived stem cells by MTT, LDH, Live/Dead assay, cytoskeleton investigation, and neuronal trans-differentiation. The results indicate an overall good interaction and show that these materials offer a biofriendly environment. A higher concentration of both nanospecies types induced some toxic effects, thus 0.5% GO, MNPs, and GO/MNPs turned out to be the most suitable option for biological testing. Moreover, a successful neuronal differentiation has been shown on these materials, where cells presented a typical neuronal phenotype. This study demonstrates the potential of this scaffold to be further used in tissue engineering applications.


Graphite , Magnetite Nanoparticles , Animals , Humans , Gelatin/chemistry , Tissue Engineering , Graphite/pharmacology , Graphite/chemistry , Cell Differentiation , Stem Cells , Cell Proliferation , Tissue Scaffolds/chemistry
15.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article En | MEDLINE | ID: mdl-34948088

Chronic liver injuries lead to liver fibrosis and then to end-stage liver cirrhosis. Liver transplantation is often needed as a course of treatment for patients in critical conditions, but limitations associated with transplantation prompted the continuous search for alternative therapeutic strategies. Cell therapy with stem cells has emerged as an attractive option in order to stimulate tissue regeneration and liver repair. Transplanted mesenchymal stem cells (MSCs) could trans-differentiate into hepatocyte-like cells and, moreover, show anti-fibrotic and immunomodulatory effects. However, cell transplantation may lead to some uncontrolled side effects, risks associated with tumorigenesis, and cell rejection. MSCs' secretome includes a large number of soluble factors and extracellular vesicles (EVs), through which they exert their therapeutic role. This could represent a cell-free strategy, which is safer and more effective than MSC transplantation. In this review, we focus on cell therapies based on MSCs and how the MSCs' secretome impacts the mechanisms associated with liver diseases. Moreover, we discuss the important therapeutic role of EVs and how their properties could be further used in liver regeneration.


Liver Cirrhosis/therapy , Mesenchymal Stem Cells/metabolism , Secretome , Extracellular Vesicles , Humans , Immunomodulation , Liver Regeneration , Wound Healing
16.
J Pers Med ; 11(9)2021 Sep 09.
Article En | MEDLINE | ID: mdl-34575678

Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.

17.
Materials (Basel) ; 14(17)2021 Aug 27.
Article En | MEDLINE | ID: mdl-34500980

Bioink-formulations based on gelatin methacrylate combined with oxidized cellulose nanofibrils are employed in the present study. The parallel investigation of the printing performance, morphological, swelling, and biological properties of the newly developed hydrogels was performed, with inks prepared using methacrylamide-modified gelatins of fish or bovine origin. Scaffolds with versatile and well-defined internal structure and high shape fidelity were successfully printed due to the high viscosity and shear-thinning behavior of formulated inks and then photo-crosslinked. The biocompatibility of 3D-scaffolds was surveyed using human adipose stem cells (hASCs) and high viability and proliferation rates were obtained when in contact with the biomaterial. Furthermore, bioprinting tests were performed with hASCs embedded in the developed formulations. The results demonstrated that the designed inks are a versatile toolkit for 3D bioprinting and further show the benefits of using fish-derived gelatin for biofabrication.

18.
RNA Biol ; 18(sup1): 51-60, 2021 10 15.
Article En | MEDLINE | ID: mdl-34582322

Considered to be a field that is continuously growing, epitranscriptomics analyzes the modifications that occur in RNA transcripts and their downstream effects. As epigenetic modifications found in DNA and histones exhibit specific roles on various biological processes, also epitranscriptomic marks control gene expression patterns that are crucial for proper cell proliferation, differentiation and tissue development. Thus, various epitranscriptomic signatures have been identified to play specific roles during stem cell differentiation towards the neuronal and glial lineages, axonal guidance, synaptic plasticity, thus leading to the development of the mature brain tissue. Here we describe in-depth molecular mechanism underlying the most important RNA modifications with emerging roles in the nervous system.


Cell Differentiation , Epigenesis, Genetic , Epigenomics/methods , Neurons/pathology , RNA Processing, Post-Transcriptional , Stem Cells/cytology , Transcriptome , Animals , Humans , Neurons/metabolism , Stem Cells/metabolism
19.
Pharmaceutics ; 13(8)2021 Aug 01.
Article En | MEDLINE | ID: mdl-34452150

The structure and biocompatibility analysis of a hydrogel based on cellulose nanofibers (CNFs) combined with alginate/pectin (A.CNF or P.CNF) and enriched with 1% or 5% 5-FU revealed more favorable properties for the cellular component when pectin was dispersed within CNFs. 5-Fluorouracil (5-FU) is an antimetabolite fluoropyrimidine used as antineoplastic drug for the treatment of multiple solid tumors. 5-FU activity leads to caspase-1 activation, secretion and maturation of interleukins (IL)-1, IL-18 and reactive oxygen species (ROS) generation. Furthermore, the effects of embedding 5-FU in P.CNF were explored in order to suppress breast tumor cell growth and induce inflammasome complex activation together with extra- and intracellular ROS generation. Exposure of tumor cells to P.CNF/5-FU resulted in a strong cytotoxic effect, an increased level of caspase-1 released in the culture media and ROS production-the latter directly proportional to the concentration of anti-tumor agent embedded in the scaffolds. Simultaneously, 5-FU determined the increase of p53 and caspase-1 expressions, both at gene and protein levels. In conclusion, P.CNF/5-FU scaffolds proved to be efficient against breast tumor cells growth due to pyroptosis induction. Furthermore, biocompatibility and the potential to support human adipose-derived stem cell growth were demonstrated, suggesting that these 3D systems could be used in soft tissue reconstruction post-mastectomy.

20.
Polymers (Basel) ; 13(13)2021 Jun 22.
Article En | MEDLINE | ID: mdl-34206674

In this paper, Bombyx mori silk sericin nanocarriers with a very low size range were obtained by nanoprecipitation. Sericin nanoparticles were loaded with doxorubicin, and they were considered a promising tool for breast cancer therapy. The chemistry, structure, morphology, and size distribution of nanocarriers were investigated by Fourier transformed infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and dynamic light scattering (DLS). Morphological investigation and DLS showed the formation of sericin nanoparticles in the 25-40 nm range. FTIR chemical characterization showed specific interactions of protein-doxorubicin-enzymes with a high influence on the drug delivery process and release behavior. The biological investigation via breast cancer cell line revealed a high activity of nanocarriers in cancer cells by inducing significant DNA damage.

...